
AWS Unveils Major Bedrock Upgrade: More AI Models and Enhanced User Flexibility

(AI generated/Shutterstock)
As the generative AI landscape continually evolves with new use cases emerging, Amazon Web Services (AWS) is keeping pace by enhancing its Bedrock platform. This upgrade significantly broadens the range of AI models available, offering users more choices and greater flexibility for their AI-driven applications.
The latest updates to Amazon Bedrock include an expanded selection of AI models from AI21 Labs, Anthropic, Cohere, Meta, and Stability AI, along with Amazon’s in-house models. Additionally, Amazon has introduced advanced customization options, enabling users to precisely adjust existing models using their own proprietary data. This is complemented by new tools designed for efficient evaluation and comparison of models, which assists in pinpointing the most suitable model for specific requirements.
Commenting at AWS re:Invent 2023, Adam Selipsky, CEO of AWS, emphasized the cloud giant’s comprehensive approach to AI model deployment and development. Selipsky highlighted the collaboration with Hugging Face, a leader in the AI research space, to deploy their models on AWS SageMaker. This partnership has led to the creation of a Hugging Face AWS deep learning container designed to accelerate the training and deployment of foundation models using SageMaker, along with AWS’s Tranium and Inferentia chips.
Selipsky stressed AWS’s commitment to providing the resources necessary for building custom models. “The best chips, the most advanced virtualization, powerful petabyte-scale networking capabilities, hyperscale clustering and the right tools to help you build,” he said.
Addressing the needs of organizations looking to quickly leverage powerful models, Selipsky acknowledged the challenges they face in selecting the right model for their specific applications. Questions about model selection, deployment speed, data security, and accuracy are top concerns for these organizations.
In response, AWS is investing significantly in “that middle layer in the stack,” as Selipsky says. This investment aims to simplify the process of accessing and utilizing various foundation models, thereby enabling organizations to rapidly experiment, test, and deploy generative AI applications while ensuring data security and integrity.
Hype aside, generative AI is becoming integral to a few key business processes. AWS points out that industries such as customer service, content creation, and data analysis are increasingly relying on AI technologies to enhance efficiency and innovate services. AWS says that the Bedrock platform’s expanded capabilities and model variety can be crucial to providing businesses with the tools to develop more sophisticated, AI-driven solutions that can adapt to their evolving needs.
With the increasing capabilities of AI models, ethical considerations and the responsible use of AI have become paramount. AWS says it is addressing these concerns by embedding robust security and privacy features into Bedrock, ensuring that users can innovate with AI while adhering to ethical standards and regulations.
In short, the Bedrock platform enhancements emphasize a key theme: choice in model selection and the freedom to experiment. By broadening the array of available AI models, AWS is empowering users with the flexibility to explore and select the most fitting AI solutions for their unique needs. This approach not only fosters a more tailored use of AI technology but also encourages innovative applications across different industries. As users navigate through the diverse options within Bedrock, they are better positioned to discover and leverage AI models that align with their specific goals and challenges.
Related Items:
AWS Adds Vector Capabilities to More Databases
AWS Adds ML and Differential Privacy Features to Clean Rooms Service
AWS Launches New Analytics Engine That Combines the Power Of Vector Search And Graph Data
AWS Announces 5 New Amazon SageMaker Capabilities for Scaling with Models
June 20, 2025
- Couchbase to be Acquired by Haveli Investments for $1.5B
- Schneider Electric Targets AI Factory Demands with Prefab Pod and Rack Systems
- Hitachi Vantara Named Leader in GigaOm Report on AI-Optimized Storage
- H2O.ai Opens Nominations for 2025 AI 100 Awards, Honoring Most Influential Leaders in AI
June 19, 2025
- ThoughtSpot Named a Leader in the 2025 Gartner Magic Quadrant for Analytics and BI Platforms
- Sifflet Lands $18M to Scale Enterprise Data Observability Offering
- Pure Storage Introduces Enterprise Data Cloud for Storing Data at Scale
- Incorta Connect Delivers Frictionless ERP Data to Databricks Without ETL Complexity
- KIOXIA Targets AI Workloads with New CD9P Series NVMe SSDs
- Hammerspace Now Available on Oracle Cloud Marketplace
- Domino Launches Spring 2025 Release to Streamline AI Delivery and Governance
June 18, 2025
- WEKA Introduces Adaptive Mesh Storage System for Agentic AI Workloads
- Zilliz Launches Milvus Ambassador Program to Empower AI Infrastructure Advocates Worldwide
- CoreWeave and Weights & Biases Launch Integrated Tools for Scalable AI Development
- BigID Launches 1st Managed DPSM Offering for Global MSSPs and MSPs
- Starburst Named Leader and Fast Mover in GigaOm Radar for Data Lakes and Lakehouses
- StorONE Unveils ONEai for GPU-Optimized, AI-Integrated Data Storage
- Cohesity Adds Deeper MongoDB Integration for Enterprise-Grade Data Protection
- Fivetran Report Finds Enterprises Racing Toward AI Without the Data to Support It
- Datavault AI to Deploy AI-Driven Supercomputing for Biofuel Innovation
- Inside the Chargeback System That Made Harvard’s Storage Sustainable
- What Are Reasoning Models and Why You Should Care
- The GDPR: An Artificial Intelligence Killer?
- It’s Snowflake Vs. Databricks in Dueling Big Data Conferences
- Databricks Takes Top Spot in Gartner DSML Platform Report
- Snowflake Widens Analytics and AI Reach at Summit 25
- Why Snowflake Bought Crunchy Data
- Top-Down or Bottom-Up Data Model Design: Which is Best?
- Change to Apache Iceberg Could Streamline Queries, Open Data
- Fine-Tuning LLM Performance: How Knowledge Graphs Can Help Avoid Missteps
- More Features…
- Mathematica Helps Crack Zodiac Killer’s Code
- It’s Official: Informatica Agrees to Be Bought by Salesforce for $8 Billion
- Solidigm Celebrates World’s Largest SSD with ‘122 Day’
- AI Agents To Drive Scientific Discovery Within a Year, Altman Predicts
- DuckLake Makes a Splash in the Lakehouse Stack – But Can It Break Through?
- The Top Five Data Labeling Firms According to Everest Group
- ‘The Relational Model Always Wins,’ RelationalAI CEO Says
- Who Is AI Inference Pipeline Builder Chalk?
- Data Prep Still Dominates Data Scientists’ Time, Survey Finds
- IBM to Buy DataStax for Database, GenAI Capabilities
- More News In Brief…
- Astronomer Unveils New Capabilities in Astro to Streamline Enterprise Data Orchestration
- Yandex Releases World’s Largest Event Dataset for Advancing Recommender Systems
- Astronomer Introduces Astro Observe to Provide Unified Full-Stack Data Orchestration and Observability
- BigID Reports Majority of Enterprises Lack AI Risk Visibility in 2025
- Databricks Unveils Databricks One: A New Way to Bring AI to Every Corner of the Business
- MariaDB Expands Enterprise Platform with Galera Cluster Acquisition
- FICO Announces New Strategic Collaboration Agreement with AWS
- Snowflake Openflow Unlocks Full Data Interoperability, Accelerating Data Movement for AI Innovation
- Databricks Announces Data Intelligence Platform for Communications
- Cisco: Agentic AI Poised to Handle 68% of Customer Service by 2028
- More This Just In…