

(Kim Kuperkova/Shutterstock)
Snowflake made a slew of announcements today during its “Snowday 2023” launch event, including a new generative AI offering dubbed Cortex, updates to its Snowpark environment for traditional machine learning, support for Iceberg Tables, updates to its Horizon data governance tool, and a new Snowflake Notebook.
The company describes Snowflake Cortex as a fully managed service for building and running all sorts of AI applications in its cloud, including generative AI applications. Currently in private preview, Cortex spans a set of serverless “specialized functions” and “general-purpose functions” that customers can call with a few lines of SQL or Python.
Specialized functions in Cortex include language models that can detect sentiment in text, summarize text, extract answers from text, and translate text into other languages. There are also specialized functions for tapping into traditional machine learning models, such as for forecasting, anomaly detection, and classification.
In the “general-purpose function” bucket, we find large language models such as Meta’s Llama 2 and several “high-performance Snowflake LLMs” that will enable customers to “chat” with their data, the company says. We also find things like vector embeddings and vector search capabilities in the general-purpose function bucket of Cortex. Snowflake is also adding vector as a native data type within its data cloud.
As a serverless offering on the Snowflake Data Cloud, Cortex is simple to use doesn’t require any AI expertise, doesn’t require the need to set up GPUs, and borrows from Snowflake’s inherent security, says Sridhar Ramaswamy, Snowflake’s senior vice president of AI.
“This is great for our users because they don’t have to do any provisioning,” Ramaswamy said at a press conference last week. “We do the provisioning. We do the deployment. It looks just like an API, similar to, say, what OpenAI offers, but it’s done right within Snowflake. Data does not leave anywhere. And it comes with the kind of guarantees that our customers want and demand, which is that the data is obviously isolated. It’s never intermingled in any kind of cross-customer training.”
As part of its Cortex launch, Snowflake is also unveiling private previews of a few “native LLM experiences” that will provide GenAI capabilities that leverage Cortex functions. This includes Document AI, Snowflake Copilot, and Universal Search.
These building blocks, combined with the public preview of support for the Streamlit development environment in Snowflake, should help to turbo-charge LLM and GenAI application development, such as for chatbots, Ramaswamy said.
“A chatbot is nothing but a combination of vector indexes and a language model that uses retrieval done on the index to do the prompting,” he said. “And this is when we give the power into the hands of our users so that the more adventurous among them can build meaningful applications very, very quickly.”
Snowpark Updates and a Notebooks Too
The company also today launched a private preview of Snowflake Notebooks, which enable users to explore data and develop machine learning applications in a familiar Juptyer-like environment running on their laptop.
“This brings you a cell-based development experience where you can build on a cell, execute, and iteratively grow–mix and match across SQL, Python, and markdown,” said Jeff Hollan director of product for Snowflake Developer Platform and Snowpark.

Snowpark provides libraries and runtimes for manipulating non-SQL data in Snowflake (Image source: Snowflake)
“A big part of analyzing and understanding your data is visualization, and this notebook integrated directly with Streamlit visualizations,” he continued. “I often like to say one my favorite things about Steramlit is there is no such thing as an ugly Streamlit app. Streamlit just has beautiful visualization out of the box, and you can use those exact visualizations inside of your notebook to get insight into your data and what it’s doing.”
Snowflake Notebooks is a component of Snowpark, the company’s collection of Python, Java, and Scala runtimes and libraries for working with non-SQL data housed in Snowflake. The company made several other announcements regarding Snowpark aimed at customers who are trying to develop traditional machine learning models on data housed in Snowflake.
For starters, it announced that the Snowpark ML Modeling API will soon be generally available. This API empowers developers and data scientists to scale out feature engineering and simplify model training for faster and more intuitive model development in Snowflake, according to the company.
It also announced Snowpark Model Registry, which will provide a one-stop-shop for cataloging and accessing all of the models used across the Snowpark environment, including traditional ML as well as LLMs for GenAI. The Snowpark Model Registry will be in public preview soon.
Lastly, it announced the start of a private preview for the Snowflake Feature Store, which will provide a repository for creating, storing, managing, and serving the ML features that data scientists and machine learning engineers want to use to train a model, as well as for running inference.
“These are three really exciting building blocks,” Hollan said. “The theme of all of these is allowing you to take those best practices that exist in the machine learning ecosystem but bringing in the simplicity, and the scale, and performance that SF can uniquely provide.”
New Horizon for Governance
Data governance has always been a core building block for developing and sustaining AI development. But now that the GenAI explosion is turbocharging interest in AI, data governance has emerged as a real stumbling block that could prevent all forms of AI success.
To that end, Snowflake today made updates to Horizon, its pre-existing offering for automating data governance tasks such as compliance, security, privacy, interoperability, and access capabilities in Snowflake’s cloud.
Without good data, every AI project will fail. With that in mind, Snowflake is launching a Horizon capability called Data Quality Monitoring. Currently in private preview, Data Quality Monitoring is aimed at making it easier for customers to measure and record data quality metrics for reporting, alerting, and debugging, the company said. Another new Horizon capability in private preview is Data Lineage, which is designed to give customers “a bird’s eye visualization of the upstream and downstream lineage of objects,” the company says.
On the privacy and security front, customers soon will be able to utilize Differential Privacy Policies, a new Snowflake capability that will allow customers to protect sensitive data “by ensuring that the output of any one query does not contain information that can be used to draw conclusions about any individual record in the underlying data set,” the company says. It’s currently in development.
Snowflake is also shipping new data classifiers that will enhance customers capability to define what sensitive data means in their business. Finally a new Trust Center, which will soon be in private preview, aims to help customers streamline their cross-cloud security and compliance monitoring by putting it in one place.
Cost is a perpetual concern when you run in the cloud, and something that Snowflake has said that it’s sensitive to. To that end, it is adding a new Cost Management Interface to Horizon that will enable admins “to easily understand, control, and optimize their spend,” the company says.
Last but not least, the company announced a public preview for Iceberg Tables. The company has already made Iceberg its preferred open table format, but there were some differences in how Iceberg tables were supported. With this announcement, it’s moving to simplify and unify that support.
“Instead of two separate table types for Iceberg, we are combining Iceberg External Tables and Native Iceberg Tables into one table type with a similar user experience,” Snowflake engineers Ron Ortloff and Steve Herbert wrote in a blog earlier this year. “You can easily configure your Iceberg catalog to match the capabilities you need.”
Related Items:
Databricks Versus Snowflake: Comparing Data Giants
Snowflake Gives Everybody a Little Something at Summit
Open Table Formats Square Off in Lakehouse Data Smackdown
December 7, 2023
- Dell Technologies Boosts AI Performance with Advanced Data Storage and NVIDIA DGX SuperPOD Integration
- Intel Labs to Present New AI Research at NeurIPS 2023
- VAST Data Closes Series E Funding Round, Nearly Triples Valuation to $9.1B
- Sprinklr Empowers Businesses to Deploy and Scale Generative AI-powered Conversational Bots
- KNIME Releases Improved UI, Enhanced AI Assistant, Modernized Scripting Experience with AI, and More
- EY Report Highlights: Generational Divide in AI Adoption and Perception in the Workforce
- Bigeye Receives Strategic Investment from Alteryx Ventures
December 6, 2023
- Astronomer Unveils Latest Astro Release with Advanced Security and Cost-Savings Features
- Asato Secures $7.5M Investment to Support Development of AI Copilot Platform
- AMD Instinct MI300 Series Launch: Accelerating Next-Gen AI and Supercomputing
- SQream Achieves SOC-2 Type II Compliance Certification for Its Cloud-Native Data Lakehouse ‘Blue’
- Ataccama Announces ONE AI for Improved Automated Data Governance
- 10% of Organizations Surveyed Launched GenAI Solutions to Production in 2023
- SingleStore to Launch Hybrid Vector and Full-Text Search Capabilities as a Snowflake Native App on the Snowflake Data Cloud
- Snowplow Launches Snowplow Digital Analytics as a Snowflake Native App, in the Data Cloud
- Hitachi Vantara Launches Unified Compute Platform Integrated with GKE Enterprise to Simplify Hybrid Cloud Management
- Red Hat Reports: IT Modernization and Open Source Adoption Key to Overcoming Skills Shortfalls
December 5, 2023
Most Read Features
- Databricks Bucks the Herd with Dolly, a Slim New LLM You Can Train Yourself
- Big Data File Formats Demystified
- Altman’s Back As Questions Swirl Around Project Q-Star
- Data Mesh Vs. Data Fabric: Understanding the Differences
- Quantum Computing and AI: A Leap Forward or a Distant Dream?
- Patterns of Progress: Andrew Ng Eyes a Revolution in Computer Vision
- AWS Adds Vector Capabilities to More Databases
- Taking GenAI from Good to Great: Retrieval-Augmented Generation and Real-Time Data
- Five AWS Predictions as re:Invent 2023 Kicks Off
- How Generative AI Is Transforming the Call Center Market
- More Features…
Most Read News In Brief
- Mathematica Helps Crack Zodiac Killer’s Code
- Databricks: We’re a Data Intelligence Platform Now
- Pandas on GPU Runs 150x Faster, Nvidia Says
- GenAI Debuts Atop Gartner’s 2023 Hype Cycle
- Retool’s State of AI Report Highlights the Rise of Vector Databases
- Amazon Launches AI Assistant, Amazon Q
- AWS Launches High-Speed Amazon S3 Express One Zone
- New Data Unveils Realities of Generative AI Adoption in the Enterprise
- Big Growth Forecasted for Big Data
- Anaconda’s Commercial Fee Is Paying Off, CEO Says
- More News In Brief…
Most Read This Just In
- Salesforce Announces New Automotive Cloud Features
- Martian Raises $9M for Advanced Model Mapping to Enhance LLM Performance and Accuracy
- DataStax Launches New Integration with LangChain, Enables Developers to Build Production-ready Generative AI Applications
- Dremio Delivers GenAI-Powered Data Discovery and Unified Path to Apache Iceberg on the Data Lakehouse
- HPE Collaborates with NVIDIA to Deliver an Enterprise-Class, Full-Stack GenAI Solution
- Voltron Data Launches Theseus to Unlock the Power of the Largest Data Sets for AI
- Amazon Aurora MySQL zero-ETL Integration with Amazon Redshift Now Generally Available
- Terra Quantum Announces Partnership with NVIDIA for Quantum-Enhanced Data Analytics
- AWS Announces 4 Zero-ETL Integrations to Make Data Access and Analysis Faster and Easier Across Data Stores
- AMD Instinct MI300 Series Launch: Accelerating Next-Gen AI and Supercomputing
- More This Just In…
Sponsored Partner Content
-
Gartner® Hype Cycle™ for Analytics and Business Intelligence 2023
-
The Art of Mastering Data Quality for AI and Analytics
-
Navigating the AI era: How to empower data engineers for success
-
TileDB Adds Vector Search Capabilities
-
The uses and abuses of Cloud Data Warehouses
-
4 Tips For Migrating From Proprietary to Open Source Solutions