

(theromb/Shutterstock)
Tigris Data has beta launched a new vector search tool for building personalized recommendations and search applications. Available now as a free beta, Vector Search is meant for use cases like retail and e-commerce, as well as financial applications and event stores.
Vector search leverages deep learning to provide search results based on similar semantic meanings and is an alternative to keyword-based searches that rely on direct matching of keywords. Instead, a vector search engine matches an input term to a vector, which is an array of features generated from an object catalog. Each vector contains tens to hundreds of dimensions that each describe aspects of an item in a catalog, resulting in context-based search results. Companies like Home Depot are using vector search algorithms on their websites to make it easier to search for products and receive recommendations on related products.
Another feature in beta is a Database to Search automatic synchronization that the company says allows users to automatically create search indexes and synchronize data from Tigris Database to Tigris Search. Additionally, Tigris has also released a tutorial on how to use the OpenAI Embeddings API to generate embeddings for documents and use Tigris to index the embeddings to build a vector search engine.
Vector Search is part of the Tigris Data platform, which is an open source, NoSQL, multi-cloud database and search platform that the company claims is 4x less expensive than DynamoDB, the NoSQL database offered by AWS.
Tigris says its distributed, cloud-native architecture allows developers to leverage cloud infrastructure services such as auto-scaling and automatic backups without the need for infrastructure management. The platform has a single API that spans search, event streaming, and transactional document store while supporting multiple programming languages and frameworks. Tigris is based on FoundationDB, a distributed database open sourced by Apple in 2018 under the Apache 2.0 license.
Tigris Data launched with $6.9 million in seed funding in 2022. The company’s investors include General Catalyst and Basis Set Ventures, along with Guillermo Rauch, CEO at Vercel, and Rob Skillington, CTO and Co-Founder of Chronosphere.
The company was founded by Ovais Tariq, Himank Chaudhary and Yevgeniy Firsov, who led the development of data storage and management at Uber. The team’s experiences with data growth and infrastructure sprawl led to its creation of a developer data platform that could simplify data applications without sacrificing speed or scalability, according to a prior release. CEO Tariq previously commented that the goal of building Tigris was to develop a single approach to data management in a developer-friendly environment that lets developers focus on building instead of managing infrastructure. He also noted that building Tigris as an open source platform was important to the team to ensure developers can avoid lock-in.
“With Vector Search, Tigris Data gives developers the ability to deliver fast, accurate, and personalized recommendations to their users,” said Tariq in a release. “This powerful tool is designed to help companies unlock the full potential of their data by making search and recommendation applications more effective and customer-centric.”
Related Items:
Home Depot Finds DIY Success with Vector Search
Vector Databases Emerge to Fill Critical Role in AI
A New Era of Natural Language Search Emerges for the Enterprise
September 11, 2025
- MinIO Brings Hyperscaler Economics On-Prem with AIStor Pods
- Honeycomb Introduces the Developer Interface of the Future with AI-Native Observability Suite
- AdaParse: Smart PDF Processing for Scientific AI Training
September 10, 2025
- Progress Software Launches SaaS RAG Platform for Verifiable Generative AI
- Sigma Reveals New AI, BI, and Analytics Features, Redefining Data Exploration Capabilities for Customers
- Couchbase Shareholders Approve Acquisition by Haveli Investments
- Plotly Launches Studio and Cloud with GA as Vibe Analytics Event Approaches
- Expert.ai Launches Enhanced Solutions for Digital Information Services
- ThoughtSpot Redefines Analytics with Boundaryless, Agentic Intelligence
- Perforce Expands AI Capabilities to Boost Speed and Security in Software Development
- DiffusionData Releases Diffusion 6.12
September 9, 2025
- Algolia Unlocks Clean, Contextual Data at Scale with Introduction of Intelligent Data Kit
- CTERA Announces IntelliVerse 2025: A Free Virtual Forum on Data Readiness and AI in Digital Transformation
- Pliops Showcases XDP LightningAI’s Proven Impact at AI Infra Summit 2025
- MLCommons Releases New MLPerf Inference v5.1 Benchmark Results
- Monte Carlo Launches Agent Observability to Help Teams Build Reliable AI
- Sphinx Launches with $9.5M to Redefine How AI Works with Data
- NetApp Modernizes Object Storage with Enhanced Speed, Scalability and Security
- Sourcetable Launches Superagents to Bring Autonomous AI Into the Spreadsheet
- CoreWeave Launches Ventures Group to Invest in Future of AI
- Inside Sibyl, Google’s Massively Parallel Machine Learning Platform
- What Are Reasoning Models and Why You Should Care
- Software-Defined Storage: Your Hidden Superpower for AI, Data Modernization Success
- Rethinking Risk: The Role of Selective Retrieval in Data Lake Strategies
- Beyond Words: Battle for Semantic Layer Supremacy Heats Up
- The AI Beatings Will Continue Until Data Improves
- Cube Ready to Become the Standard for Universal Semantic Layer, If Needed
- Why Metadata Is the New Interface Between IT and AI
- Top-Down or Bottom-Up Data Model Design: Which is Best?
- How to Make Data Work for What’s Next
- More Features…
- Mathematica Helps Crack Zodiac Killer’s Code
- GigaOm Rates the Object Stores
- Promethium Wants to Make Self Service Data Work at AI Scale
- Solidigm Celebrates World’s Largest SSD with ‘122 Day’
- Databricks Now Worth $100B. Will It Reach $1T?
- AI Hype Cycle: Gartner Charts the Rise of Agents, ModelOps, Synthetic Data, and AI Engineering
- MIT Report Flags 95% GenAI Failure Rate, But Critics Say It Oversimplifies
- The Top Five Data Labeling Firms According to Everest Group
- Anaconda Report Links AI Slowdown to Gaps in Data Governance
- Data Prep Still Dominates Data Scientists’ Time, Survey Finds
- More News In Brief…
- Seagate Unveils IronWolf Pro 24TB Hard Drive for SMBs and Enterprises
- Gartner Predicts 40% of Generative AI Solutions Will Be Multimodal By 2027
- DataSnap Expands with AI-Enabled Embedded Analytics to Accelerate Growth for Modern Businesses
- Acceldata Announces General Availability of Agentic Data Management
- Hitachi Vantara Recognized by GigaOm, Adds S3 Table Functionality to Virtual Storage Platform One Object
- Transcend Expands ‘Do Not Train’ and Deep Deletion to Power Responsible AI at Scale for B2B AI Companies
- Pecan AI Brings Explainable AI Forecasting Directly to Business Teams
- Liminal Paves the Way for Secure and Compliant Generative AI in Enterprise Settings
- SETI Institute Awards Davie Postdoctoral Fellowship for AI/ML-Driven Exoplanet Discovery
- NVIDIA: Industry Leaders Transform Enterprise Data Centers for the AI Era with RTX PRO Servers
- More This Just In…