Language Flags

Translation Disclaimer

HPCwire Enterprise Tech HPCwire Japan
Leverage Big Data'14

January 08, 2013

Proteomic Research Unfurls Cancer Conundrum

DNA sequencing has come a long way in the last ten years, with time and monetary costs plummeting over the last decade. It was thought that understanding the genetic code would provide clues to curing complex diseases like cancer. But as it turns out, those answers may instead lie in the much more complicated protein world.

To tackle this research, oncologist David Agus teamed up with Danny Hillis, who counts entrepreneur, former VP of Disney, and pioneer of parallel processing among his descriptors. The two formed Applied Proteomics, a company designed to help map proteins within the human body and determine their interactions with cancerous cells and vice versa.

It is tough for computers—even those equipped to handle big data—to get their servers around proteins. Sequencing DNA is relatively easy because it operates on a similar foundation to computers—there are four nucleic acids repeating themselves in a random pattern much like information codes itself through ones and zeros.

On the other hand, proteins throw a wrench in this model due to a process known as protein folding. In its mRNA form, each protein exists in an identically shaped strand, just as two unique pieces of DNA would. But when that mRNA is translated into amino acids, the protein folds in on itself to create a particular three-dimensional shape that is essential to the protein’s function. As a result, two proteins can have two entirely different shape-dependent functions even if they are chemically identical.

Agus’s goal was to, though a sample of urine or blood, create a model of the proteome throughout the human body. However, the complexity of proteins made it nigh impossible, akin to trying to find a person on the ground from an airplane.

Danny Hillis came to work with Agus through an unexpected intermediary in Al Gore. Gore visited the lab where Agus was working on proteomics. According to Agus, Gore’s comment was simply, “This really would benefit from an engineer’s way of thinking attached to it.”

After a phone call from Agus and a little nudging from Gore, Hillis was on board. After two years of research under Applied Minds, the two developed a testing method that could be replicated precisely.

The lynchpin lies in the ability to mass produce blood test results, where anomalies can be found and validated more thoroughly over a larger sample size. However, the sample size itself, consisting of several tests performed to cover all of the proteins across a human body, is cumbersome.

“We are going to get overwhelmed by this enormous amount of genomic information,” says Robert Austin, a Princeton University physicist. “It’s sort of like high-energy physics before the quark model came about,” he says. “We lack a ‘theory of cancer’ right now.”

Physicist John Quackenbush, who was plucked from Fermilab to join the Human Genome Project, explained that simply accruing large amounts of data is not necessarily the recipe. “I can tell you from my experience that sometimes coming in like that you can be a little naive in thinking that having a lot of data will suddenly solve all of your problems,” Quackenbush said. “Big data is not a panacea.”

With that said, the goal is to develop the analytics and processing power that will be able to pick out the cancerous signal from the normal protein noise. With that, doctors could hypothetically begin to individually tailor cancer treatments based on a patient’s protein analysis. Further, anomalous proteins could be identified in advance of tumors and preventative measures could be taken.

Before anyone gets ahead of themselves, however, Agus and Hillis’s research is still just starting to uncover these techniques and understanding the ensuing data. Progress, according to Agus, is dependent on the co-operation of researchers like Austin—a physicist working on a tumor interaction model—who span the sciences. It will also be dependent on how well the ensuing swaths of information can be applied.

Related Articles

Breaching the Big Data Barrier in Healthcare

An Open Source Cure to Cancer

Adding Autonomy to Personalized Medicine

Share Options


» Subscribe to our weekly e-newsletter


There is 1 discussion item posted.

Datanami Just Won Me Over
Submitted by bezenek on Jan 10, 2013 @ 2:07 AM EST

If I were Gore, I would have partnered these guys with:

Keep up the good work choosing articles.

Post #1


Most Read Features

Most Read News

Most Read This Just In

Sponsored Whitepapers

Planning Your Dashboard Project

02/01/2014 | iDashboards

Achieve your dashboard initiative goals by paving a path for success. A strategic plan helps you focus on the right key performance indicators and ensures your dashboards are effective. Learn how your organization can excel by planning out your dashboard project with our proven step-by-step process. This informational whitepaper will outline the benefits of well-thought dashboards, simplify the dashboard planning process, help avoid implementation challenges, and assist in a establishing a post deployment strategy.

Download this Whitepaper...

Slicing the Big Data Analytics Stack

11/26/2013 | HP, Mellanox, Revolution Analytics, SAS, Teradata

This special report provides an in-depth view into a series of technical tools and capabilities that are powering the next generation of big data analytics. Used properly, these tools provide increased insight, the possibility for new discoveries, and the ability to make quantitative decisions based on actual operational intelligence.

Download this Whitepaper...

View the White Paper Library

Sponsored Multimedia

Webinar: Powering Research with Knowledge Discovery & Data Mining (KDD)

Watch this webinar and learn how to develop “future-proof” advanced computing/storage technology solutions to easily manage large, shared compute resources and very large volumes of data. Focus on the research and the application results, not system and data management.

View Multimedia

Video: Using Eureqa to Uncover Mathematical Patterns Hidden in Your Data

Eureqa is like having an army of scientists working to unravel the fundamental equations hidden deep within your data. Eureqa’s algorithms identify what’s important and what’s not, enabling you to model, predict, and optimize what you care about like never before. Watch the video and learn how Eureqa can help you discover the hidden equations in your data.

View Multimedia

More Multimedia


Job Bank

Datanami Conferences Ad

Featured Events

May 5-11, 2014
Big Data Week Atlanta
Atlanta, GA
United States

May 29-30, 2014
St. Louis, MO
United States

June 10-12, 2014
Big Data Expo
New York, NY
United States

June 18-18, 2014
Women in Advanced Computing Summit (WiAC ’14)
Philadelphia, PA
United States

June 22-26, 2014

» View/Search Events

» Post an Event